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All Computational Fluid Dynamics simulations require the generation of a

grid that covers the flow-field domain and its boundaries. In order to ob-

tain an accurate solution, the grid must be concentrated in regions where

there are large gradients, and the grid must possess favorable mathematical

characteristics, such as acceptable grid skewness.

For the flow about an aerospace vehicle, such as the Crew Emergency Rescue

Vehicle (CERV), a grid on the configuration boundary surface must be cre-

ated and integrated into an overall grid. The vehicle surface grid is extracted

from a numerical model obtained from either a Computer-Aided Design

system (CAD)or from measurement of a physical model.

The numerical model of the CERV vehicle is obtained from the measurement

of a 5.9 inch long wind-tunnel model. This measuring instrument obtains
two coordinates around the model at fixed stations in the third coordinate.

Defining the vehicle geometry in a right-hand Cartesian coordinate system,

the origin of the coordinate system is at the most forward point of the vehicle.

The negative z-axis extends down the vehicle, the y-axis is in the span-wise

direction, and the x-axis is in the vertical direction . The measured data

base consists of x, y surface coordinates at twenty z stations (cross sections)
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down the vehicle.

Measured coordinates have associated measurement errors, and there is the

possibility of roughness on the model itself which could occur in the manu-

facturing process. An interrogation of the plotted cross sections of the CERV

model reveals a number of serious irregularities which could be due to mea-

surement error or surface roughness. If the irregularities are allowed in the

computational grid, they will ultimately appear in the numerical solution,

and therefore, require a statistical evaluation. Alternately, the numerical

model can be initially idealized by smoothing the measured data. Also,

there may be surface characteristics that are not included in a CFD solution.

Surface Smoothing

To remove imperfections in the measured data, a cubic spline smoothing

algorithm [1] is applied to the coordinates at each z cross section. The appli-

cation of the algorithm starts with the creation of a parametric independent

variable t, which is the approximated arc length along a cross section. The

and y coordinates are considered to be functions z(t) and y(t). The functions

are determined from the sets of parametric data

{y,,t,}i:i

where xi and yi are the ith measured coordinates on a cross section, ti is the

approximate arc length at the ith point and n is the number of measured

points on a cross section and varies from cross section to cross section. The

approximate arc length is defined by

t,+,= - + (y,÷,_ y,)2+ t,

where tl = 0. This computation starts on the bottom of the vehicle at

the symmetry plane and continues around to the top of the vehicle at the

symmetry plane. After the maximum approximate arc length is computed,

the variable t is redefined to be the normalized approximate arc length by

tl
tl --

t,_



The functions x(t) and y(t) are represented in vector form

x(t) = {
x(t)

y(t) }

and the cubic spline representation is

where

%, b_, Ci = Di =cu, d_,

The spline conditions are

Xi(ti+l)-- Xi+l(ti+l)

ax._q _ (i 1,2..n-2,0<t<t,_)ax'(ti+l) = at t i+1_, = •dt

d2Xi_x'(t,+l)_,:= _(t,+l)

The coefficients {Ai,B,,CI,Di}I=_ -' are undetermined parameters whose

solution define X(t) in Equation (1). The objective is to find the coefficients

which minimize the integral of second derivatives squared

where

subject to the constraint

,=,[x(t,)_x,:xm(t')]2l-<E

and E is a positive constant specifying the extent of smoothing. The vector

6X is the allowable deviation of the spline function X(t) and the measured

surface coordinates X,_. The restated objective is to find the smoothest cubic

spline passing within the bounds



x..(t,) - 6x, < < +

where 8Xl is the maximum deviation of the spline functions from the mea-

sured coordinates.

The method of Lagrange multipliers from the calculus of variations is used

to find the parameters

Sk = {Ai,Bi,Ci,D/}_=___ _-I

where the index k denotes the kth cross section in the stream-wise direction.

The solution algorithm for spline smoothing can be found in reference 1.

The technique exists in subroutine form on the Langley math library (SUB-

ROUTINE CSDSES)[2]. A main program is written to read the measured

coordinates, compute the approximate arc length and call the spline smooth-

ing subroutine for each coordinate. It is necessary to provide the allowable

.t_y.ai=,_ and the constant E is set equal nk-1. Figures 1 showsderivations t --,J/=l ,

the application of the smoothing procedure to one of the cross sections from

the CERV vehicle.

Surface Grid

The technique described above smooths the measured data at each cross

section in only one direction. The next step is to distribute points along the

smoothed cross sections in the fashion that is desired for the final grid points.

These points are then smoothed and interpolated in the stream-wise direction

for the surface grid points. The initial desired distribution of points on the

CERV vehicle is uniform around the vehicle near the front and concentrated

at the wingtip as the wing emerges from the fuselage down stream. The

streamwise distribution should be concentrated near the front of the vehicle.

If N is the number of grid points around the body and the index I denotes

the Ith grid point, a computational coordinate _ around the body is defined

by

_=(I-1)/(N-1)



Figure 1: Spline Smoothing

and _ is mapped into the normalized approximate arc length t with the vari-

able _. Interpolated _ and O coordinates are obtained from S_ and Equation

1 given L

In the streamwise direction and up to the wing root, the desired grid spacing

is uniform and _ = _. At the wing root the distribution becomes a bi-

exponential defined by

0 <t'<t,

er' - 1
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where_ is the desired percentage of grid points around the bottom of the

vehicle up to the wing leading edge, and t, is the normalized approximate arc

length along the same curve up the wing leading edge. The constant F1 gov-

erns the amount of concentration at the wing tip, and 1"2 is computed using

a Newton-Raphson iteration to assure continuity of _(_,). The parameters,

_,, Q and rx vary in the streamwise direction from the wing root to the end

of the wing.

The computation of the surface grid is based on smoothing the previously- de-

fined data in the streamwise direction. The parametric form of the smoothed

cross section data in the streamwise direction is

¢ - 1 l=N,k=m 1 l=N,k=m k=m
{Zk, Sk}k=l_xr,k, s_j. r=_,k-__ {_3r,k,8k _ l=l,k=l

where zk is the negative z-coordinate of the kth cross section, m is the number

of cross sections, and s is the normalized approximate arc length in the

streamwise direction defined by

*_,k+l = X/(_r,k+l - _r,k) 2 + (_,k+t - _r,k)2 + (z_+t - zk) 2 + _

Sl,1 = 0

The computation of sLk starts at the nose of the vehicle and ends at k = m.

Again, after the maximum approximate arc length is computed for each I,

s is normalized with respect to the maximum value. The same procedure

that was used to represent a cubic spline approximation for X(t) is used to

compute X(I, 2) where

z(I,s) }
xcL+) = vCL+)

+(I,+)

and the cubic spline representation is

.3"lI=Pl, k=m

X(/, 3) = {_kl, k --_ Bl,k(8 -- 3k) + _,l,k(8 -- $k) 2 + _)l,k(3 -- 8k) _I=l,k=l



where

A/,J, = aut.h BI,k = b_t,k Ct,k = cvt,t _t,k = dut'k

(Izr,k bzt,k C:I,i dzt',i

_ l=N,k=m

The procedure described above is used to compute oez = {At,k, I3t,k, Ct,k, Dr,kj'r=l,k= 1
where

If M is the number of grid points along the body in the streamwise direction,

and the index K denotes the Kth grid point, a computational coordinate (

along the vehicle is defined by

(K-l)

(:-(M 1)

and _ is mapped into the normalized approximate arc length s. A concen-

tration of grid points near the front of the vehicle is achieved by using the
transformation

er_¢ - 1

¢r3 _ 1

The constant F3 determines the amount of concentration. A surface grid

{X(I,K),Y(I, K), Z(I, t'_1=_r'K=M is obtained by evaluation with Equa-• L/JI=I,K=I

tion 2 given g.

Starting with the measured data, a surface grid for the CERV vehicle, where

N = 81 and M = 125, is shown in Figure 2. This boundary surface grid is

then used in the computation of the volume grid about the vehicle.

The volume grid is designed to capture all of the shock phenomena and

provide for reasonable estimates of heating on the lower surface of the vehicle

for high Mach numbers and high angles of attack.



Figure 2: CERV SurfaceGrid

The grid topology chosenfor the CERV flow field is a dual-block topology
similar to that describedin reference3. In this topology, there is an inner
block beginning from a singularity line just upstream of the wing root. A
secondblock surroundsthe forward part of the vehicleand the inner block.
In reference3, the lifting surfaceson the configuration has sharp leading
edges,whereas,the CERV wing hasa rounded leading edge. Consequently,
the outer boundary surfaceof the inner-grid block is displacedforward of the
wing leadingedgeso that a C-type grid is formed spanwiseabout the wing.

The advantageof using a two-block topology compared to a single-block
topology is that the flow field regioncan be adequatelycoveredwith fewer
points. That is, in order to haveenoughpoints to cover the regionbetween
thewing and symmetry plane,asingleblock would requiremanymorepoints
in the forward region than is necessary.The disadvantagesare the additional
programcomplexity in the solutioncodeand the numerical complicationsat
the singularity line.

Inner-Block Volume Grid

The inner block is bounded by the vehicle surface, the outer boundary sur-



Figure 3: Inner-Block Grid

face of the inner block, the bottom-symmetry surface, the top-symmetry
surface,the singularity line and the downstreamsurface(Fig. 3). The outer
boundary surfaceis definedby creating an analytical curve, translating the
curve to the singularity line and rotating it around the vehicle stretching
in the spanwisedirection and skewing it upward as it passesover the top
of the vehicle. This is very similar to the surfaceboundary generation that
is describedin reference3 with the addition of the stretching and skewing.
The interior grid and the distribution of grid points on the outer-boundary
surface,symmetry-planesurfacesand the downstreamsurfaceare computed
using a three-dimensionalversion of the Two-Boundary Grid Generation
technique (TBGG) describedin reference4. The grid points are concen-
trated at the vehiclesurfaceand near orthogonality is maintained. Figure 4
showsthe inner grid on the downstreamboundary surface.As the singularity
line is approachedfrom downstream,the distribution approachesa uniform
distribution matching the distribution upstreamof the singularity line.

Outer-Block Volume Gricl

The grid on the outer block surrounds the forward part of the fuselage and

the grid on the inner block. The six surfaces forming the outer block are:



Figure 4: Downstream Surface Grid Inner Block

(1) the forward fuselage and outer boundary surface on the inner block; (2)

a far-field boundary surface; (3) the symmetry plane on the bottom side of

the vehicle; (4)the symmetry plane on the top side of the vehicle; (5) a polar

singularity line extending from the (0, 0, 0) point of the vehicle to the far-field

boundary surface; and (6) a downstream surface extending the inner block

to the far-field boundary.

The first computation for the outer block is the far-field boundary surface

which is similar to computing the outer boundary surface for the inner-grid

block. The characteristics of the far-field boundary are that it is relatively

close to the vehicle on the bottom side and relatively far away on the top

side to be just outside of the bow shock. Further, it should expand away

from the wings in the spanwise direction to capture the shock phenomenon.

Instead of using a single anal_ical curve and rotating it around the vehicle,
two curves are blended in the streamwise direction to create another curve

that is translated to a point about four shock stand-off distances from the

nose, and rotated about the vehicle while being stretched in the spanwise
and vertical directions. The two blended curves are chosen such that one

is suitable forward and the other is suitable rearward. Grid points are dis-
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Figure 5: Far-Field Boundary Surface/Grid

tributed rearward and around the outer boundary approximately across from

the corresponding points on the opposite-side surface. A side view of the far

field surface is shown in Figure 5.

The general approach for computing the outer-block grid is transfinite inter-

polation [5], given grid point information at block boundaries and intermedi-

ate surfaces. The outer block computation is divided into two parts: (1) the

forward part from the nose singularity line back to a surface extending from

the singularity line around the fuselage to the far field boundary (singularity-

line surface); and (2) a rearward part extending from the singularity-line
surface to the downstream surface.

The forward part of the outer block is obtained by first computing grid points

on the bottom symmetry plane, top symmetry plane and a spanwise surface

nearly orthogonal to the symmetry plane. The TBGG algorithm is applied

in order to concentrate grid points near the vehicle surface and maintain near

orthogonality. Figure 6 shows the three surfaces. Transfinite interpolation

with linear/exponential blending functions is used to fill in the interior.

The rearward part on the outer block is computed using transfinite inter-
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Figure 6: SurfaceGrids Used For VolumeGrid Computation

polation with Lagrangian blending functions [6]. This allows first derivative
continuity in grid spacingand grid curve direction except in the neighbor-
hood of the singularity line. A concentration of grid points in this region is

used to overcome this deficiency. Figure 7 shows grid points in the symme-

try plane and two spanwise surfaces in the streamwise direction. The final

paper will present more details on how the allowable derivations _SX between

the measured and computed surface coordinates are obtained. Also, there

will be more detail on the interactive software to compute the volume grid.
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Figure 7: Volume Grid About The CERV Vehicle
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